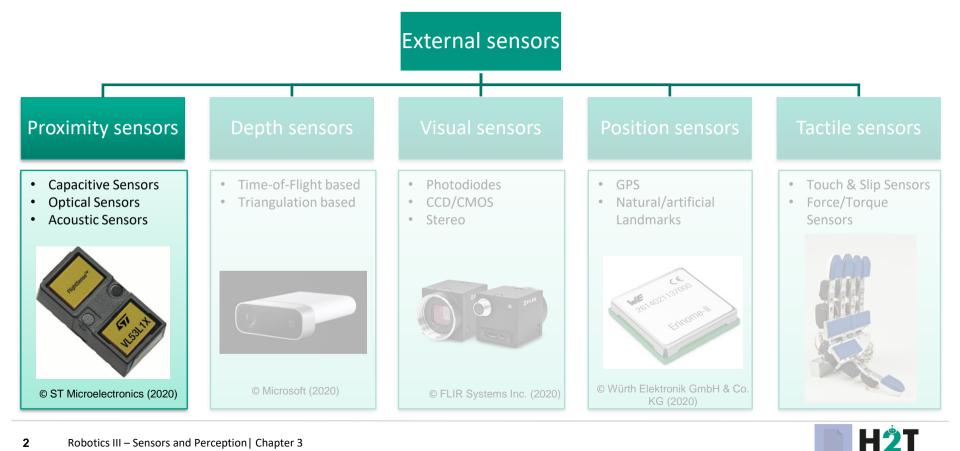


Robotics III: Sensors and Perception in Robotics Chapter 03: External Sensors

Tamim Asfour


http://www.humanoids.kit.edu

www.kit.edu

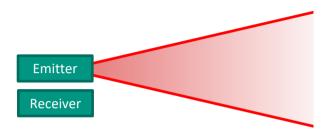
External (Exteroceptive) Sensors

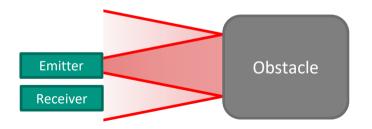
Karlsruher Institut für Technologie

Proximity Sensors

- Detect objects/obstacles within a specific distance range
- Provide binary signal based on a threshold
- Proximity sensors are non-contact devices
- Application:
 - Obstacle avoidance
 - Parking systems
- Advantage of proximity sensors
 - No damage to the object
 - Better durability (permanence)
- Types of proximity sensors:
 - Capacitive
 - Optical
 - Acoustic
 - Others...

© ST Microelectronics (2020)

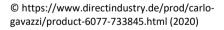



Optical Proximity Sensors

- Rely on light reflection
- Light barrier: Binary output information

- Advantages:
 - Larger operating distance than capacitive proximity sensors
 - Non-contact
 - Adjustable threshold value

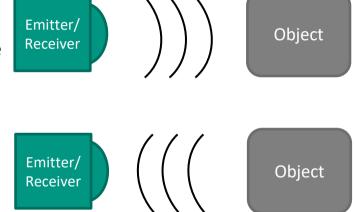
Receiver does not detect IR-Light


Receiver detects reflected IR-Light

Optical Proximity Sensors

- Reflective light sensor:
 - Red-Light-LED
 - Time of Flight (ToF) measurement / Triangulation with background suppression
 - Standard in automation, very cost-effective, but also in smart phones
 - Laser reflex light sensor:
 - Distance:
 - Smallest Object Diameter:
 - Measuring Rates:

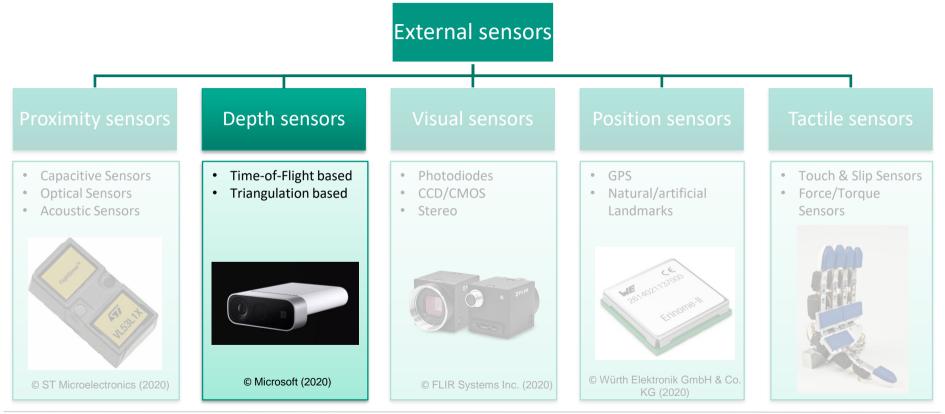
- 7 200mm
- 1 2mm
- 1000 5000 Hz



Acoustic Proximity Sensors

- Acoustic principle for ultrasound
- The transmitter emits a wave in the ultrasonic region of the acoustical spectrum, typically 20 200 kHz (higher than audible range of human hearing)
- Distance can be calculated using the Time-of-Flight, i.e., time difference between the sent and received signal

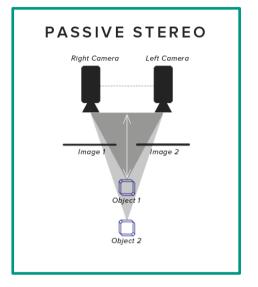
Advantage:


- Emission and detection with the same converter
- Time of Flight -> distance approximation possible
- Useful over distances out to several meters for detecting most solid (also transparent) objects and liquid.
- Problem:
 - Noise

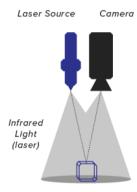
External (Exteroceptive) Sensors

Distance Sensors

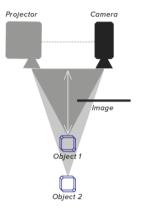
- Measurement of the distance between the sensor and the object
- Advantages:
 - Larger range than proximity sensors
 - Exact distance information (not only binary information)
 - Suitable for the detection of geometric environmental information (environment modeling)
- Types:
 - Passive Systems
 - Stereo camera systems
 - Active Systems
 - Laser scanner
 - Time of Flight (ToF) camera
 - Laser stripe
 - Pattern projection


Difference:

- The passive methods *do not need* their own light source, but they use the *ambient* light for gathering the distance information
- The active methods need a *light source* of their own for illuminating the target.

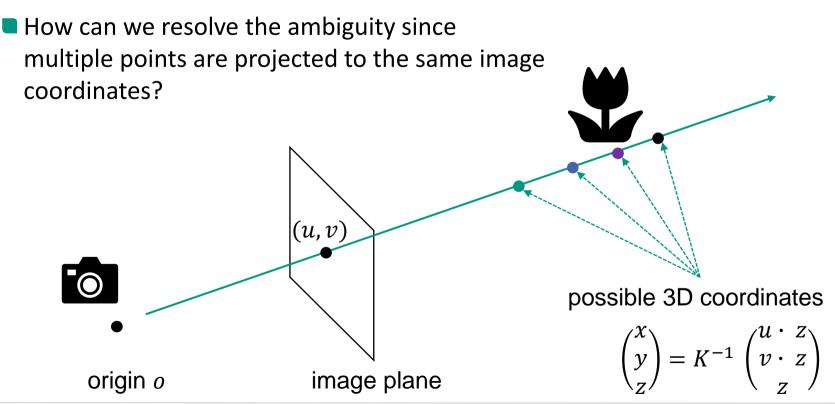


Depth Sensors: Overview



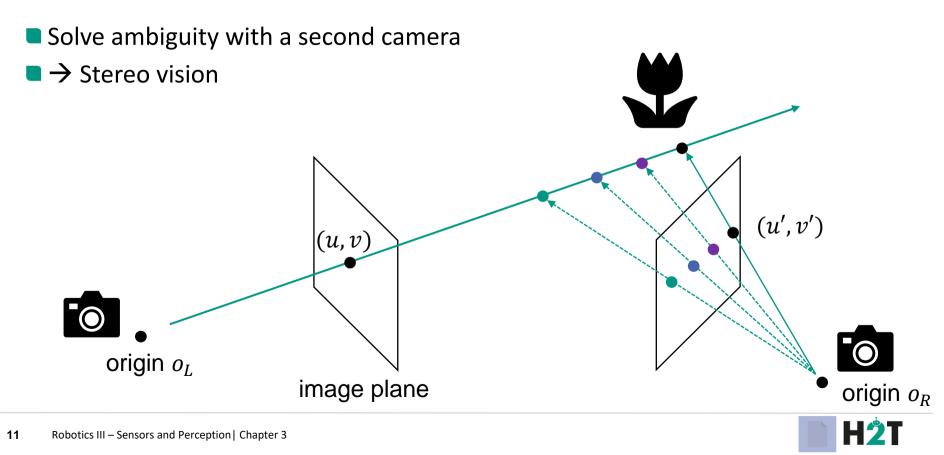
TIME OF FLIGHT

STRUCTURED LIGHT



https://medium.com/@DAQRI/depth-cameras-for-mobile-ar-from-iphones-to-wearables-and-beyond-ea29758ec280

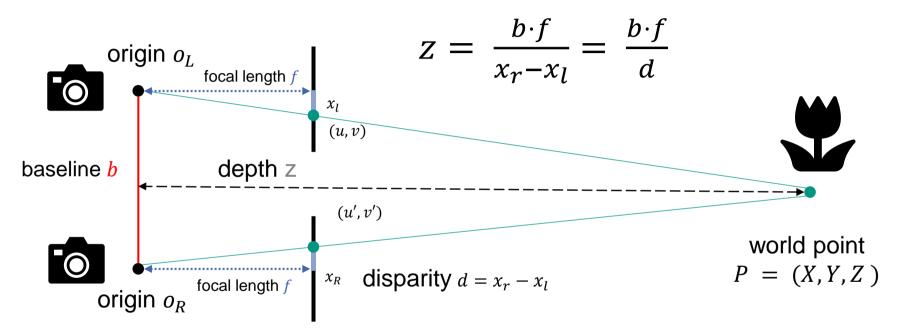
Motivation: Can We Compute a 3D Coordinate?



Triangulation

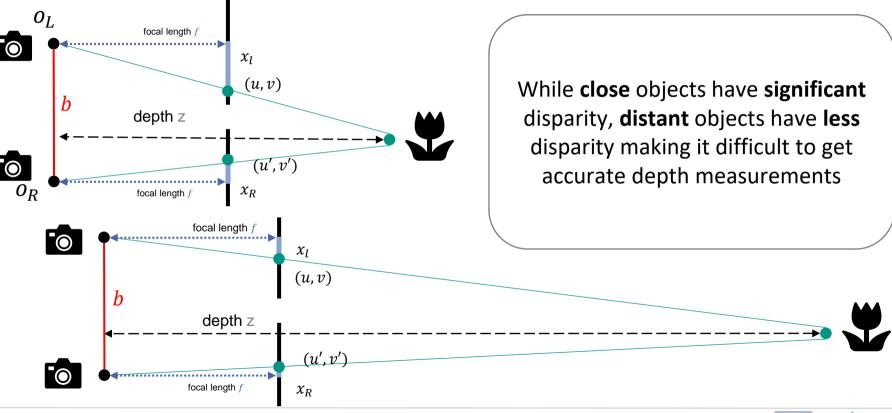
Passive Methods – Stereo Vision

© Roboception(2020)


"Passive Triangulation" (Triangulation with ambient light)

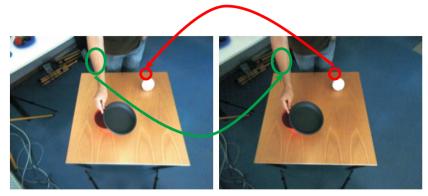
- Example: Human eye and stereo camera systems
- Depth reconstruction using images from different perspectives
- Operating mode: Object at position P with different coordinates in image plane
 Triangulation of corresponding pixels.
 - Theorem of intersecting lines

Stereo-Vision: Triangulation



Compute depth z with triangulation

Stereo-Vision: Disparity

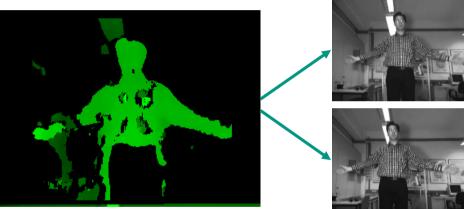


Passive Methods – Stereo Vision

Advantages

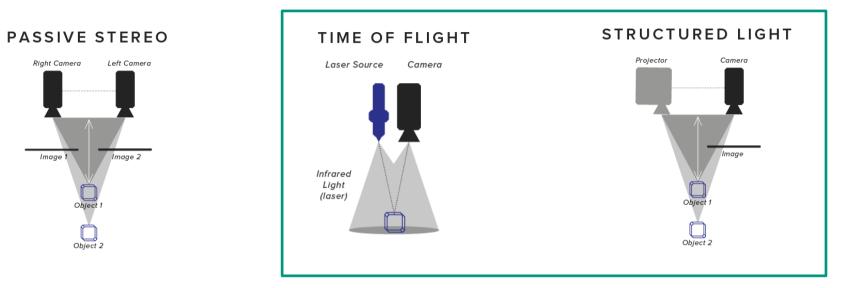
- Adjustable focal lengths/baseline
- No special illumination is required

Disadvantages


- At least two calibrated cameras required
- Correspondence problem on homogeneous surfaces
- Stereo vision is only good for close to mid-range distances (2-5 meters, depending on the baseline). For longer distances we use other clues to figure out distance!

Passive Methods – Stereo Vision

- Correspondence problem: What point pairs in the image plane correspond to the same scene element?
- Differences in:
 - Brightness
 - Color
 - Image region


- **Epipolar line construction** can facilitate the search for corresponding features
 - Reduces search space to the intersections of epipolar lines

Depth Sensors: Overview

Active Methods

https://medium.com/@DAQRI/depth-cameras-for-mobile-ar-from-iphones-to-wearables-and-beyond-ea29758ec280

Active Methods – for Distance Measurement

- Use an active energy source to create an artificial texture on the surface to be measured.
 - Stable against external disturbances
 - Measurement by deflection of emitted energy
 - → 2D or 3D Distance measurement
- Generates dense depth image: $P_{ij} = (x_{ij}, y_{ij}, z_{ij}), 1 \le i \le m, 1 \le j \le n$

With equidistant quantization in X- and Y-directions $Im_{ij} = (z_{ij}), \quad 1 \le i \le m, 1 \le j \le n$


Measurement Principles

- Time-of-Flight
- Structured Light

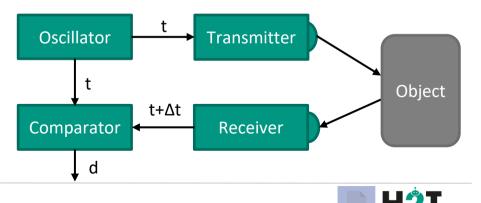
Depth Sensors: Overview

STRUCTURED LIGHT

https://medium.com/@DAQRI/depth-cameras-for-mobile-ar-from-iphones-to-wearables-and-beyond-ea29758ec280

Time-of-Flight (I)

Time-of-flight (TOF) range sensors measure the round-trip time required for a laser pulse of emitted energy to travel to a reflecting object, then echo back to a receiver.


Distance (d) from sensor to target surface by: $d = \frac{1}{2}c \cdot t$

c: signal speed

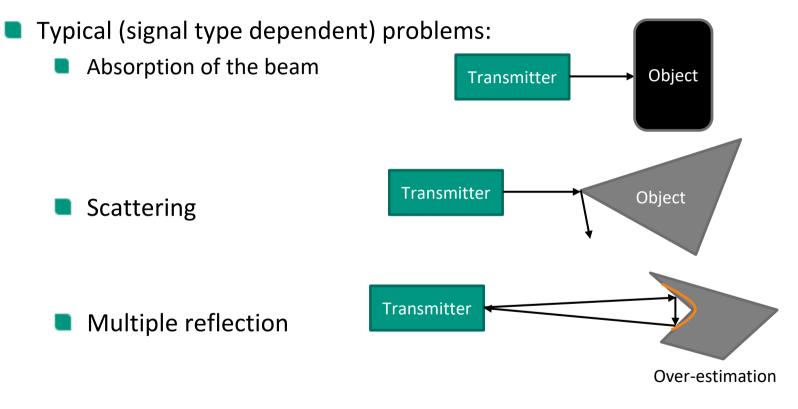
t: Time of Flight (elapsed time) is measureable

t is the time for a round-trip -> distance is given by $d = \frac{1}{2}c t$

- Measurement of t
 - Directly
 - From phase shift of the signal after its modulation

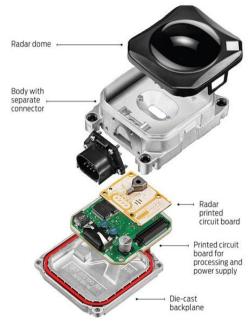
Time-of-Flight (II)

- Although the implementation differs, time-of-flight measurement can be accomplished with
 - Radio waves (radar)
 - Sound or ultrasonic waves (sonar)
 - Light waves (laser radar lidar)
- The same measuring principle is used for all signal types.


Potential error sources for ToF systems are

- Variations in the propagation speed:
 - Example: In acoustic based systems, the speed of sound is influenced by temperature changes, and to a lesser extent by humidity.
- Uncertainties in determining the exact time of arrival of the reflected pulse
- Inaccuracies in the timing circuit used to measure the round-trip time of flight
- Interaction of the incident wave with the target surface.

Time-of-Flight (III)



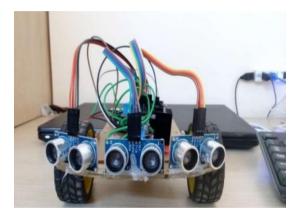
Time-of-Flight: Radar

- Radar is an active sensor and usually uses electromagnetic energy in the range 1-12.5 GHz
 - this corresponds to wavelengths of 30-2 cm (microwave energy)
 - unaffected by fog, rain, dust, haze and smoke
- Purpose: detection, location, distance measurement
- Transmitter: strongly bundled waves in the mm, cm & dm ranges as short pulses (high transmission power, clear reflection)
- Receiver: registers reflections between the pulses
- Diameter of a radio wave bundle is inversely proportional to the antenna size.
 - Large antenna is required for fine resolution
 - Radio waves spread with light speed
 - Accurate time measurement over short distance – only with complex electronics

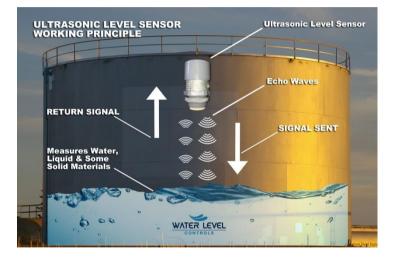
Automotive radar ©Bosch

Time-of-Flight: Ultrasound (I)

- Referred to as ultrasound sensors or sonar sensors
- The operation principle of sonar sensors includes
 - Emission of a short ultrasonic acoustic signal (duration ~ 1 ms, frequency 50-250 kHz, higher than human hearing limit)
 - 2. Measurement of the time until reflected impulse received
- Ultrasonic sensors emit a *chirp* (e.g. 1.2 milliseconds), where a chirp is a short powerful pulse of a range of frequencies
- As the speed of sound in air is known, the distance to the object can be computed from the elapsed time between emission and echo
- An ultrasonic sensor array helps to detect position of obstacles
- In robotics: collision avoidance for mobile robots, autonomous cars, ...


© https://www.antratek.de/hc-sr04ultrasonic-sonar-distance-sensor

Time-of-Flight: Ultrasound (II)


Examples

Mobile Robot

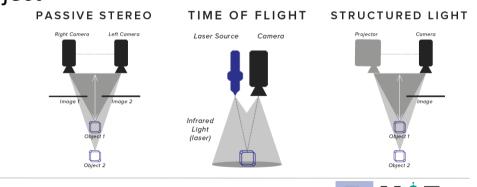
© https://www.murata.com/en-eu

 $\ensuremath{\mathbb{C}}$ https://waterlevelcontrols.com/ultrasonic-levelsensor-transmitter/

Time-of-Flight: Ultrasound (III)

- **Limitations** of sonar sensors:
 - Relatively narrow cone
 - Example: for a 360° coverage, a typical mobile robot sensor configuration needs to use 24 sensors, each one mapping a cone of about 15°
 - Uncertainty of beam spreading
 - Specular **reflections** (mirror like) give rise to erroneous readings
 - The sonar beam hits a smooth surface at a shallow angle and so reflects away from the sensor
 - Sensor deliver information only if an object further away reflects the beam but distance is incorrect
 - Arrays of sonar sensors can lead to **crosstalk**
 - One sensor detects the reflected beam of another sensor
 - The **speed of sound depends on** air temperature and pressure
 - A temperature change of 16 degree can cause a 30cm error at 10m!

Recap: Proximity and Distance Sensors

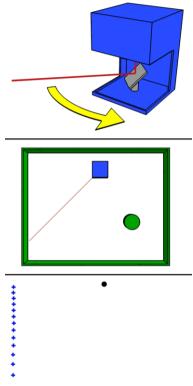


Proximity Sensors

- Provide binary signal (there is an object or there is no object) within a certain distance range
- Usually detect light reflection on the surface of an object

Distance Sensors

- Measure the actual distance to an object
- Different measurement principles:
 - Stereo Vision
 - Time of Flight
 - Structured Light

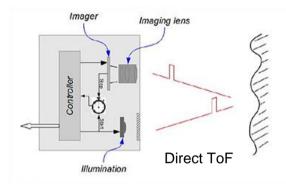


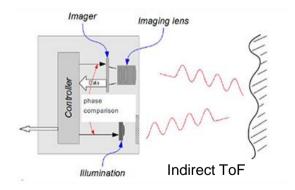
Time-of-Flight: LiDAR

- Laser range finders are commonly used to measure the distance to objects
 - Known as laser radars (or LiDARs = Light Detection and Ranging sensors)
- Illumination of target with laser (UV, visible or IR) and measurement of reflection
- Deflecting mirrors can be used to obtain scene representation

https://en. LIDAR-scanned-SICK-LMS-animationwikipedia.org/wiki/Lidar#/media/File:.gif

LiDAR: Operating Principles (I)


- Two prevalent measurement principles
 - Direct ToF
 - Indirect ToF

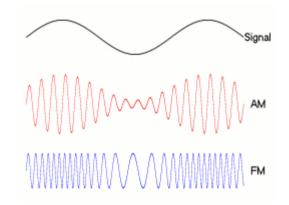

Direct ToF:

- send out short pulses of light that last just a few nanoseconds
- measure the time it takes for some of the emitted light to come back.

Indirect ToF:

- send out continuous, modulated light
- measure the phase of the reflected light to calculate the distance to an object

https://www.terabee.com/time-of-flight-principle/


LiDAR: Operating Principles (II)

- 1. Amplitude Modulation (AM) LiDAR:
 - The operating principle is the same as sonar
 - A short pulse of (laser) light is emitted using amplitude modulation (note: speed of light >> speed of sound)
 - The time elapsed between emission and detection is used to determine distance (using the speed of light)

2. Frequency Modulation (FM) LiDAR:

- Frequency of emitted light is modulated
- Distance is calculated based on the difference in emitted and received light frequencies
- More sensitive than AM-Lidar, but more complex transceivers

en.wikipedia.org/wiki/Frequency_modulation

LiDAR: Operating Principles (III)

Why is the signal modulated for both LiDAR operating principles

Answer:

- Some AM send a pulsed laser signal
- Distance R can be measured using the time elapsed (Δt) and the refracting index n

$$R = \frac{1}{2n}c\Delta t$$

- The **resolution** depends on the measurement uncertainty of the time and the spatial width of the pulse $w = c\tau$
- To measure distance with an accuracy in the cm range, the laser pulses should be in the region of $\tau = 10^{-10} s$
- Typical lasers can only produce pulses in the order of $\tau = 10^{-9}s$, smaller pulses require more expensive lasers

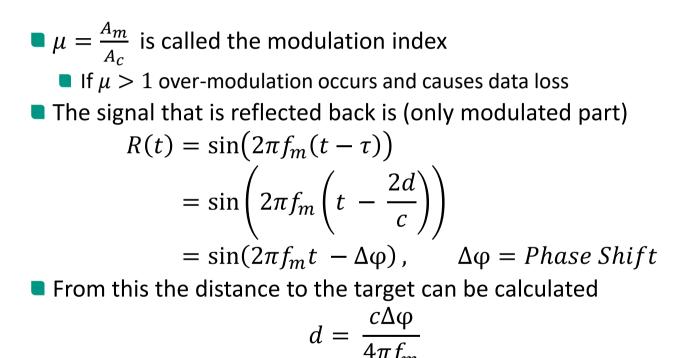
LiDAR: Amplitude Modulation Method (I)

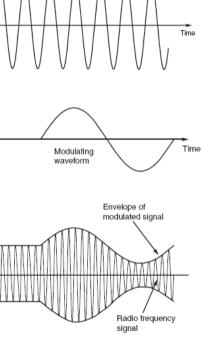
Uses a high frequency continuous signal with no information called a carrier wave c(t) with Amplitude A_c and frequency f_c

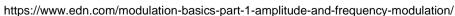
$$c(t) = A_c \sin(2\pi f_c t)$$

- Information is added to the carrier wave by modulating its amplitude with a lower frequency signal m(t)
 - Can be a sinusoidal signal (but can also be any other form, e.g., noise, a song, etc.)

$$m(t) = A_m \sin(2\pi f_m t)$$


The amplitude modulated signal is (in case of sinusoidal modulation) $S(t) = (A_c + A_m \sin(2\pi f_m t)) \sin(2\pi f_c t)$ $= A_c (1 + \mu \sin(2\pi f_m t)) \sin(2\pi f_c t), \qquad \mu = \frac{A_m}{A_c}$


"An amplitude modulated laser rangefinder - Electronic circuit design and implementation" - Fazel Naser & Stefan Morin, 2022



LiDAR: Amplitude Modulation Method (II)

LiDAR: Frequency Modulation Method (I)

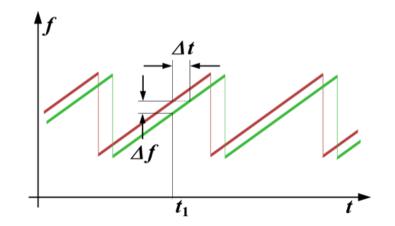
- Instead of pulsing the emitted signal, like the time-of-flight sensors, Frequency Modulated Continuous Wave (FMCW) systems emit a continuous signal
- The frequency of this signal is modulated over time.
- The frequency changes linearly between f_0 and f_1 over period T

$$f(t) = f_0 \left(1 - \frac{t}{T} \right) + f_1 \frac{t}{T} = f_0 + \frac{f_1 - f_0}{T} t$$

- The signal emitted from the sender takes time Δt to travel from the sender to the obstacle and back
- The signal velocity is c and the distance covered is 2r (2 times the distance to travel in both directions):

$$\Delta t = \frac{2r}{c}$$

LiDAR: Frequency Modulation Method (II)



- The frequency of the returned signal is measured: $f_R(t)$
- ... and compared to the current emitted frequency: $\Delta f(t) = f(t) f_R(t)$
- Since the frequency of the returned signal is the frequency of the emitted signal at t Δt the equation can be written as

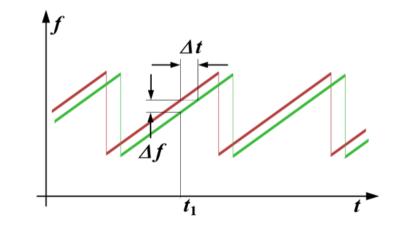
$$\Delta f(t) = f(t) - f(t - \Delta t)$$

Using the equation for f we get:

$$\Delta f(t) = f_0 + \frac{f_1 - f_0}{T} t - f_0 - \frac{f_1 - f_0}{T} (t - \Delta t)$$

= $\frac{f_1 - f_0}{T} t - \frac{f_1 - f_0}{T} (t - \Delta t)$
= $\frac{f_1 - f_0}{T} \Delta t$

LiDAR: Frequency Modulation Method (III)


By inserting
$$\Delta t = \frac{2r}{c}$$
 into $\Delta f(t) = \frac{f_1 - f_0}{T} \Delta t$, we get
$$\Delta f(t) = \frac{f_1 - f_0}{T} \cdot \frac{2r}{c}$$

Solving for r:

$$r = \frac{c}{2} \cdot \frac{T \cdot \Delta f}{f_1 - f_0}$$

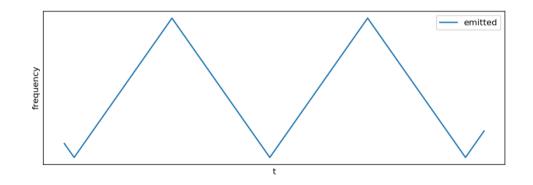
Note: This solution is valid for static objects, that are not moving

LiDAR: Frequency Modulation Method for Moving Objects (I)

- If the obstacle **is not moving** the frequency difference Δf can be used to directly calculate the distance to the object
- If the obstacle is moving there is an additional source of frequency shift: Doppler shift

Change of wavelength caused by motion

Objects moving away: "Red shift" longer wavelength, lower frequency


■ Objects moving closer: "Blue shift" → shorter wavelength, higher frequency

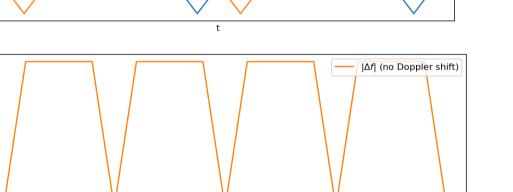
LiDAR: Frequency Modulation Method for Moving Objects (II)

- If the Doppler shift is considered, the distance and relative velocity of the obstacle can be measured simultaneously.
- The frequency modulation is adapted to a triangle modulation

If the obstacle is not moving relative to the sender, the frequency difference is the same for the rising and falling slope/edge of the signal

LiDAR: Frequency Modulation Method for Moving Objects (III)

frequency


frequency

 Δt

Obstacle *not* moving

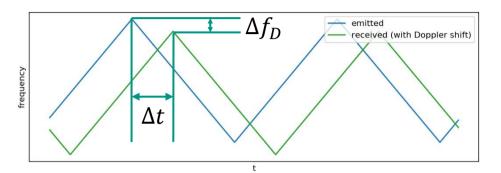
Frequency difference due to
 Signal delay (Δt)

 Evaluation of delta between emitted and received signal frequency |Δ*f* |:
 amplitude mostly constant
 → obstacle not moving

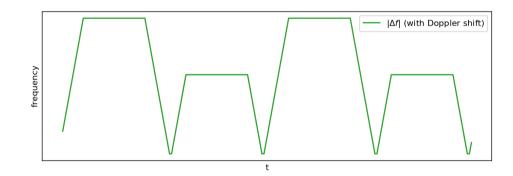
t

emitted

received (no Doppler shift)



LiDAR: Frequency Modulation Method for Moving Objects (IV)



Obstacle is moving

- Frequency difference due to
 - Signal delay (Δt)
 - Doppler shift (Δf_D)

 Difference between emitted and received signal frequency |∆f |:
 alternating amplitude
 → obstacle is moving

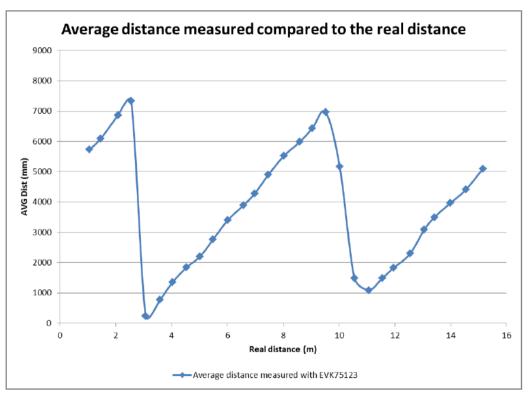
LiDAR: Frequency Modulation Method for Moving Objects (V)

- Using the difference of Δf_{rising} and $\Delta f_{falling}$, the Doppler shift can be computed
- From the Doppler shift the radial velocity of the obstacle can be computed
- By sweeping the emitted signal over the scene, a distance and radial velocity map can be computed
- Applications of FMCW Lidar:

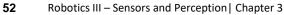
 - 🔹 Robots 🗲 Scene scanning, SLAM

 - l ...

LiDAR: Comparison AM and FM Methods

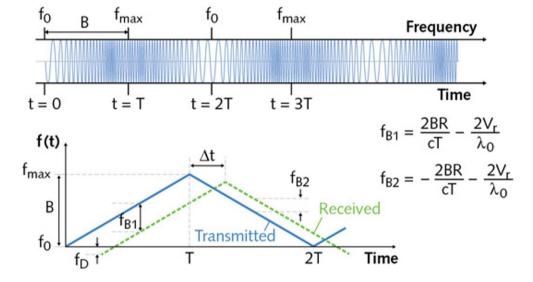


Aliasing-Effect



Distance calculations will lead to ambiguous results if the light travels back and forth during a longer period of time than the period of the modulated light

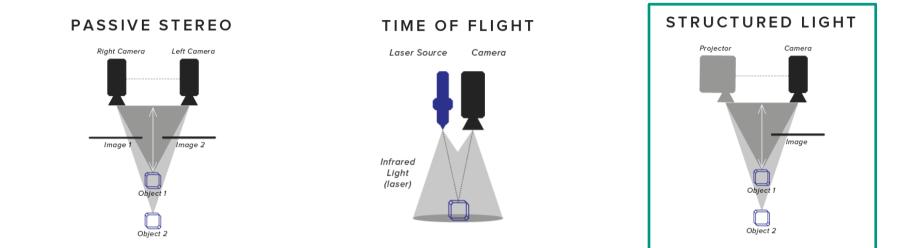
©Melexis



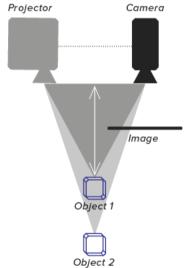
Nomenclature: Phase Difference & Frequency Modulation

FM-LiDAR:

- The emitted laser light has a modulated frequency
- Measures the difference in the frequency (**not phase**) of the incoming and outgoing light
- A single measurement of the signal results in **distance and** relative velocity of the target

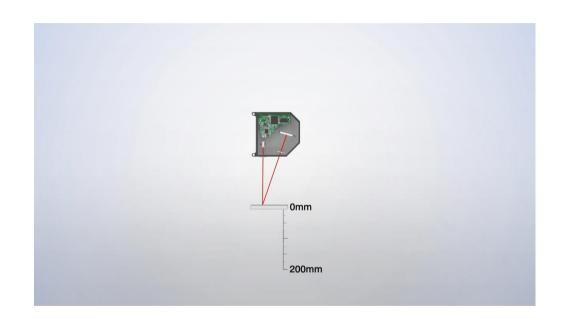

© https://www.laserfocusworld.com/lasers-sources/article/16548115/lidar-a-photonics-guide-to-the-autonomous-vehicle-market

Depth Sensors: Overview



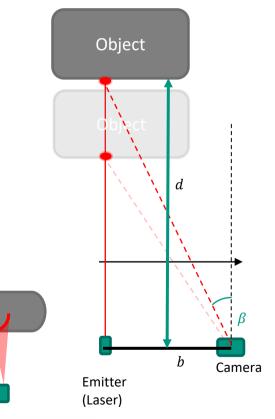
Active Triangulation

- Project the laser beam into the scene and record it using a position-sensitive sensor
- Combination of active light source and camera
- Different projection schemes
 - Single light beam
 - Laser line (light section)
 - Projection of an encoded pattern (structured light)



Structured Light: Laser Triangulation (I)

- A sensor emits a laser light that hits the object at some incidence angle, reflects from it and gets detected.
- Since light moves in straight lines, a triangle is formed between the laser source, the measured object, and the detector.
- By measuring the exact location at which the laser hits the detector we can calculate the distance to the object using simple geometry


Structured Light: Laser Triangulation (II)

- Laser triangulation: Measurement of the deflection of the beam
- Emitter/receiver unit with fixed distance b and orientation:
 - Laser emitter: Beam orthogonal to baseline b
 - Laser-projection on object detected by camera at angle β
 - Triangulation of object distance:

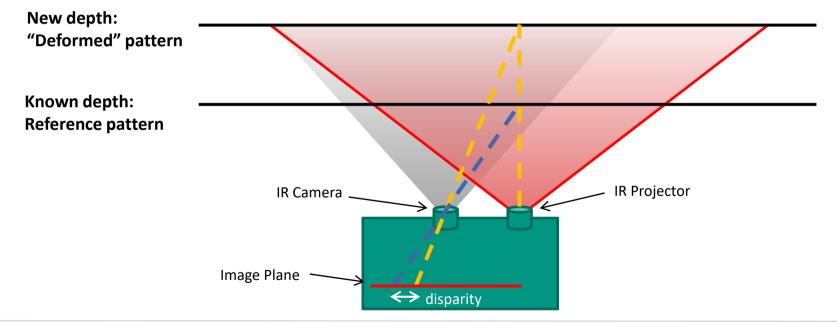
Trigonometry:
$$tan \beta = \frac{b}{d} \Rightarrow d = \frac{b}{tan \beta}$$

Laser-beam can be 2D (Line laser):
 Projected stripe on object

Structured Light: Laser Triangulation (III)

Scanning with laser stripes

© Micro-Epsilon 2020

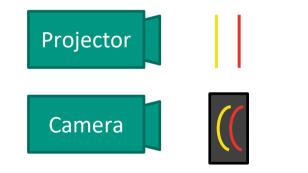

KIT, IAR

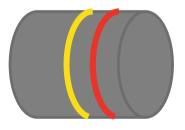
Structured Light: Depth Cameras

Idea: Project pattern with identifiable features onto scene and calculate depth map using triangulation between reference and deformed pattern



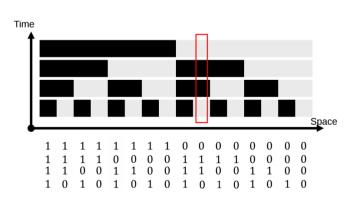
Pattern Types: Pattern Encoding/Decoding

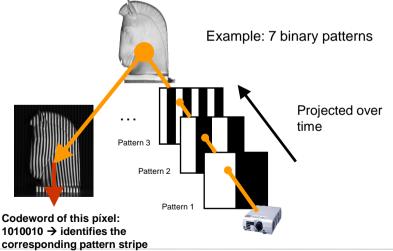

- Projection of identifiable features onto scene
- Correspondence problem: Which pixel in the camera image corresponds to which pixel of the projector?
- Answer: Coded patterns



Pattern Types: Wavelength Encoding

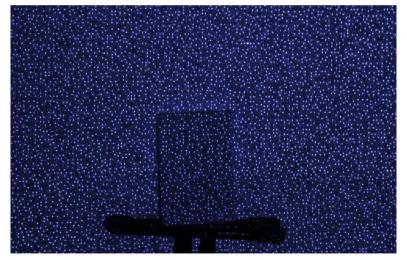
- Projected pattern made of different colors (wavelengths),
- Project a known pattern onto the scene and infer depth from the deformation of that pattern
- **Example:** pattern with two different color encoded columns


The process of matching an image region with its corresponding pattern region is known as pattern decoding -> similar to searching correspondences



Pattern Types: Binary Coding

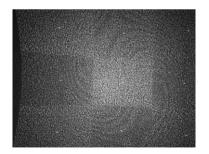
- Assign each stripe a unique illumination code over time
- Only two illumination levels are commonly used, which are coded as 0 and 1.
- $2^n 1$ stripes in n images
- Advantage: Easy to segment the image patterns
- Drawback: Long scanning time (no real-time capture of moving objects), i.e. static objects only



Pattern Types: Spatial Patterns

- Projection of a special uniquely identifiable pattern
- Infrared Patterns captures by IR-filtered camera
- Internal processor computes depth-map from reference frame and deformed pattern
- Used with different coding types/patterns

xandrox.github.io/jax-digital-signage-kinect



Depth Camera: Example

For example: Microsoft Kinect, Intel RealSense, Asus Xtion...

- Use of structured (IR) Light for Depth Reconstruction:
 - Projector emits IR pattern
 - IR camera captures pattern on object-
 - Additional Camera for RGB image

© Intel (2020)

Karlsruher Institut für Technologie

Depth Camera: Summary

Kinect:

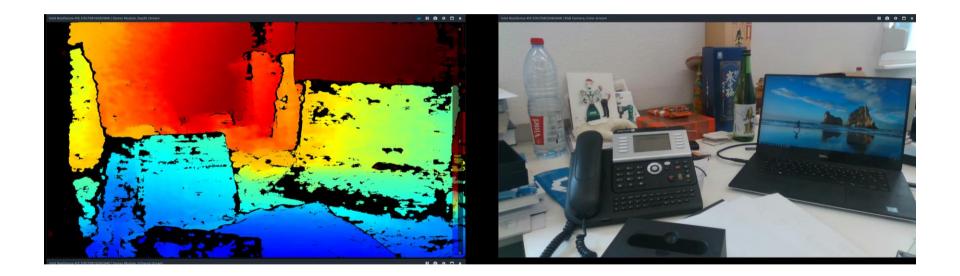
- Measuring range: 0,8m 3,5m
- Resolution: 640 x 480 pixel
- Frequency: 30Hz
- Depth accuracy: 1cm (2m distance)
- Spatial resolution: 3mm (2m distance)

Advantages

- Cheap
- No correspondence problem on homogeneous surfaces

Disadvantages

- Limited distance (2m)
- Requires good lighting control (restricted to indoor environments)
- Use of multiple cameras: Projected pattern can disturb each other

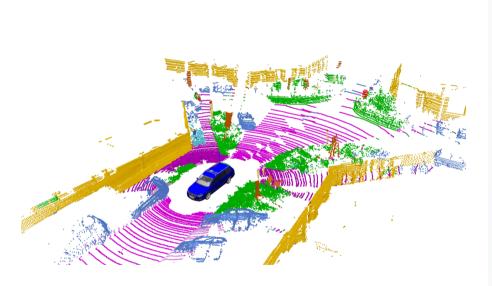

Depth Camera: Example Image

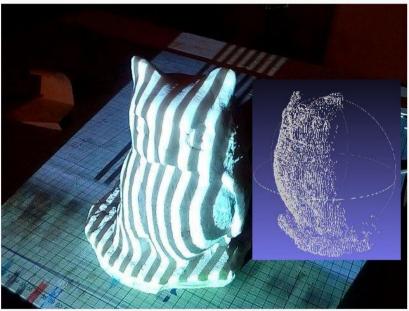
RealSense Live Demo

LiDAR vs. Structured Light

LiDAR:

- Advantages
 - Constant error model
 - Long range
 - General wide horizontal FOV
- Disadvantages
 - High cost
 - Larger scan time
 - Limited angular density & asymmetric density


Structured Light:


- Advantages
 - Very high resolution and density
 - "Instantaneous" horizontal & vertical capture
 - Monochrome or color
 - No moving parts
- Disadvantages
 - Quality dependent on scene texture
 - Non-linear error model
 - Computationally expensive

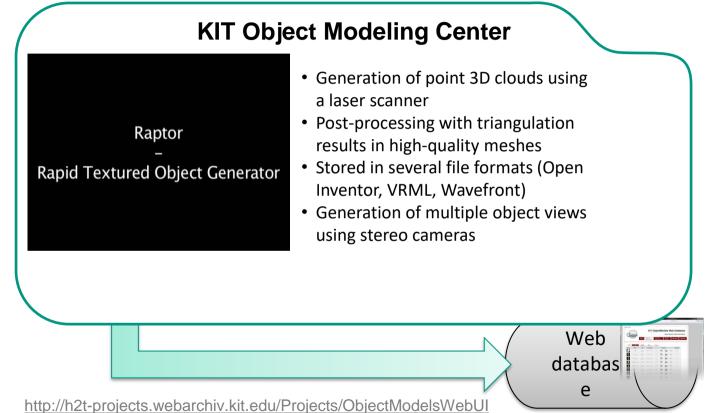
LiDAR vs. Structured Light: Point Clouds

pythonawesome.com/semantic-and-instance-segmentation-of-lidar-pointclouds-for-autonomous-driving/ cdn.instructables.com/F9F/T7PP/I88LJCRP/F9FT7PPI88LJCRP.LARGE.jpg

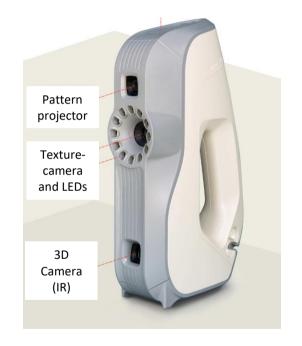
Scanning with Laser Stripes: Ex. Minolta Vi-900

- Uses the light-stripe method to emit a horizontal stripe light through a cylindrical lens to the object.
- The reflected light from the object is received by the CCD, and then converted by triangulation into distance information.
- This process is repeated by scanning the stripe light vertically on the object surface using a mirror, to obtain a 3D image data of the object.
- Light-cut process Laser swings in the device
- Characteristics
 - Measuring range: 60cm 120cm
 - Resolution: 640 x 480 pixel
 - Measuring time: 0,3s 2,5s
 - Accuracy: ~0,047mm (at 60 cm distance)
 - Weight: approx. 11kg

Scanning with Laser Stripes: Ex. Minolta Vi-900



Object Modeling with Minolta



3D Scanning Object Scanning @ H²T

- Artec Eva 3D Hand-held 3D Scanner
- Use of structured light: Static line-pattern projected onto object and captured by IR-camera
 - Capture rate: 16 Frames per second
 - 2 millions points per second
 - Object distance: 0,4 1 m
 - Weight: 0,9 kg
 - Additional RGB camera + flash for object-texture scanning
- Software for multi-frame model reconstruction and post-processing

© 2020 Artec Europe

3D Scanning Object Scanning @ H²T

External (Exteroceptive) Sensors

Visual Sensors – Artificial Eyes

- Used in
 - Mobile robotics (autonomous vehicles)
 - Humanoid robotics
 - Industrial robotics
 - Safety systems
 - Quality control

Tasks

- Object recognition
- Classification
- Detection
- Motion tracking
 - 3D-vision
 - Obstacle detection

Digital Cameras (I)

Cameras differ in:

- Image quality (Quality of CCD-Chip (respectively CMOS-Chip), but also: Lensesetup)
- **Color mode**: Grey-value image or multi channel color
- Resolution (typically 640×480, 1024×768, 2048 x 1088)
- **Color Resolution**: Color depth of image values (8bit, 16bit, 24bit)
- Framerate:

Number of images captured per second (typically15/30/60/120/200 Hz) Typically framerate and resolution are depending on each other

© FLIR Systems Inc. (2020)

Digital Cameras (II)

Data interface	Transfer rate
USB 3.0	5000 Mbit/s
USB 2.0	480 Mbit/s (430 Mbit/s payload)
Gigabit Ethernet (GigE):	1000 Mbit/s (720 Mbit/s payload)
Camera Link	up to 5,44 Gbit/s
Firewire IEEE1394a	400 Mbit/s (320 Mbit / s payload)
Firewire IEEE1394b	800 Mbit/s (640 Mbit / s payload)

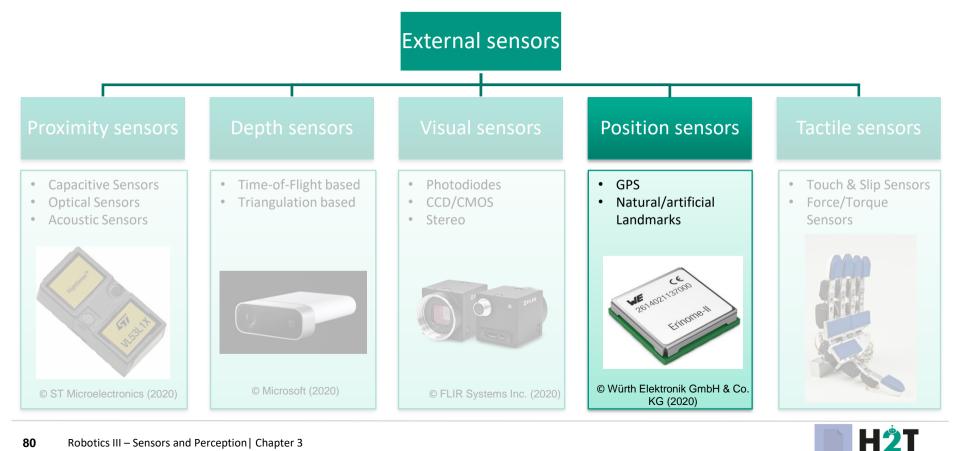
Cameras support different encoding of image data:

- B/W-Cameras: mostly 8 bit grey value
- Color Cameras: Either Bayer-Pattern or often internally converted to RGB24, YUV422, etc.

Camera Examples

Karlsruhe Humanoid Head

PointGrey Flea3 USB3



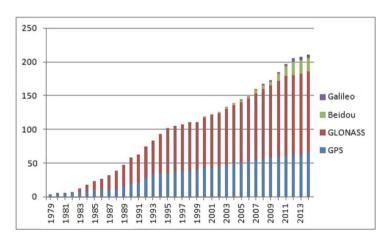
roboception rc visard 65

External (Exteroceptive) Sensors

Absolute Position

- Requires active beacons: Signal transmitted from known positions
- Used in transportation, airplanes and ships, ...
- Examples:
 - Position lights, terrestrial wireless networks, satellite based, ...

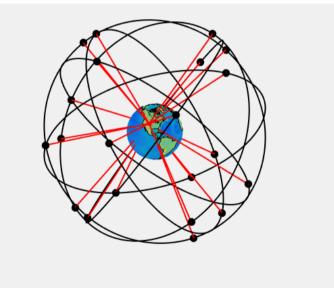
https://de.wikipedia.org/wiki/Leuchtfeuer_Heiligenhafen#/media/Datei:Heilig enhafen_Warnfeuer_7148.JPG



Karlsruher Institut für Technologie

Satellite Navigation

- Four existing Global Navigation Satellite Systems (GNSS):
 - GPS (USA)
 - GLONASS (Russia)
 - Galileo (European Union)
 - BeiDou (China)
- Overall, more than 200 GNSS satellites (1978-2014)
- Each satellites includes an atomic clock and sends its **position** and **timing** reference


https://de.wikipedia.org/wiki/Globales_Navigationssatellitensystem#/ media/Datei:Launched_GNSS_. 2014jpg

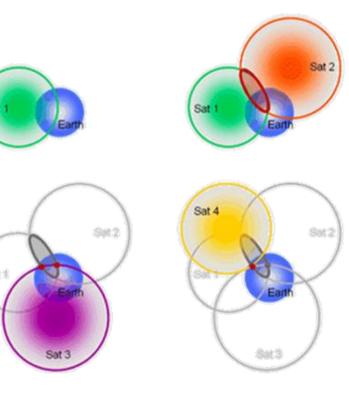
Absolute Position

- At least 4 satellites needed for position estimation
- As GNSS signals are weak, satellites need to be within line of sight

https://commons.wikimedia.org/wiki/File:GPS24golden.gif

Satellite Navigation

- Different methods of position estimation
- Condition: Signal from at least four satellites needed
- Position estimation:
 - Code phase (Pseudo distance)
 - AT between transmission from satellite and receiving
 - Time error; Signal speed. ~ c in vacuum $\rightarrow \Delta T \cdot c \neq$ real distance
 - \rightarrow systematic error
 - \rightarrow pseudo distance

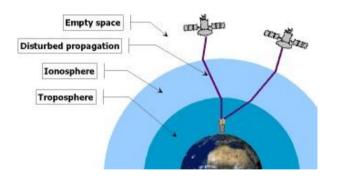

- Doppler-Count
 - Speed estimation
- Carrier mixed phase
 - Determination of position with phase shift between signals

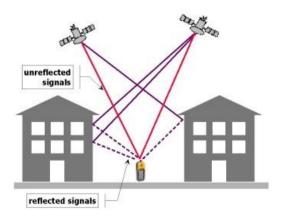
Trilateration in Satellite Navigation

- Why are 4 Satellites needed?
 - Intuition: 3-dimensional space requires 3 satellites
- Positioning via GNSS uses trilateration
 - First satellite places the receiver somewhere on a sphere
 - Second satellite narrows it down to a circle (intersection between 2 spheres)
 - Third narrows it down to 2 points
 - Fourth is used to choose the correct point
- If the altitude of the receiver is known (e.g., when driving in a car) 3 satellites are enough
 - However, as very precise time is needed (most consumer grade GPS receivers are not precise enough), the fourth one is still required to level out the error introduced by "relative" time

GPS Receiver Example

© Würth Elektronik GmbH & Co. KG (2020) Receiver available as System on Chip (SoC)


- 🛯 18mm x 18mm
- Multiple GNSS systems supported in one module: GPS, GLONASS, Galileo, BeiDou
- Accuracy up to 1,5m
- Max update rate: 10Hz
- Time to first position: Up to 28s
- Price: ~30€


Error with Pseudo Distance

- Errors depending on satellite position and environment conditions
- Atmospheric refraction

Multipath reflection

https://www.aboutcivil.org/sources-of-errors-in-gps.html

GPS Error

Error reason	Standard deviation [m]
Satellite Position	3
Ionospheric refraction	5
Tropospheric refraction	2
Multi-reflection	5
"selective availability" (intended error until 1. Mai 2000)	30

Accuracy is also strongly depending on surrounding terrain (Houses, trees, ...)

Differential GPS

- Significantly lower error (Exception: Multipath reflection)
- Premise: Second GPS receiver with known position in range of less than 10km, experiences same error (same reference satellite)
- Comparison of errors and calculation of error vector, transmission of correction value to first receiver
- Effective accuracy can reach several centimetre

